
Single-Line Handwritten Sentence Recognition

Shivam Pandey | Shivam Kumar | Abhishek Varghese
Team 1

November 25, 2018

1 Introduction and Overview
Over the last few decades, researches on handwritten text recog-
nition have made impressive progress. They are to a large ex-
tent motivated by many application areas, such as automated
postal address, data acquisition in banks, image translation,
etc. The difficulties encountered in this are mainly caused by
huge variations in writing styles and the overlapping and the
interconnection of neighboring characters. We implemented an
amalgam of machine learning (ML) and non-ML algorithms to
create a model to recognize single-line handwritten sentences.
Although the accuracy of our model is not enough to be used in
mission-critical or fully automated systems, it could assist us by
generating a fairly accurate text from a handwritten document.
The method section describes the architecture and design of
our model, while the experimental analysis section describes
the datasets used and showcases the results of our model on test
sentences. We conclude by giving some future directions to
improve over the performance of our model.

2 Methods
We have exploited techniques such as Kadane’s Algorithm,
K-means Clustering, Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), Long Short Term Memory
(LSTM) units, Connectionist Temporal Classification (CTC),
Language Model (LM) and Maximum Likelihood Estimation
(MLE). The input given to the recognition system is an image
of a single-line handwritten English sentence, which is pro-
cessed through a series of aforementioned techniques to finally
output the sentence in machine-printed format. The proposed
model will be substantiated by the subsequent details.

Line Segmentation into Words
Commencement of our model entails segmenting the input sen-
tence image into a sequence of words’ images. Firstly, our
image is smoothed out to remove noise and then, converted into
binary image. After that, we associate a large positive weight
to black pixels and a small negative weight to white pixels.
Then, we project the image on horizontal and vertical axes, so
that the index of horizontal projection associated with the col-
umn having all pixels as white will have negative value, and
the index of horizontal projection associated with the columns
having some pixels as black will have positive value. After
finding maximum sum subarray of horizontal projection using
Kadane’s algorithm, we know where our sentence is located in
picture. Using this, we remove the spaces from start and end
of the sentence present in picture, and do the same for top and
bottom of the sentence. Our horizontal projection has one more
property that, when there are spaces in the sentence, the val-

ues of horizontal projection in those areas are very low. Using
this property, we locate all the spaces present in the sentence.
But these spaces could be inter-character or inter-word space.
Here, we assume that gaps between words are larger than the
gaps between characters. We use k-means algorithm to cluster
the inter-character spaces and inter-word spaces. After getting
inter-word spaces, we split the sentence at the bisector lines
of these inter-word spaces. After that, we remove the spaces
around words using the samemethod which was used to remove
spaces around sentence.

Figure 1: Line Segmentation into Words

Handwritten Word Recognition
After line segmentation step, we obtain a sequence of images
of words extracted from the image of the sentence. Next step
is to recognize each of the word from the image. We will build
a Neural Network (NN) as shown in figure-2 which is trained
on word-images from the IAM dataset. This NN consists
ofCNN layers, RNN layers (LSTM-RNN) and a final CTC layer.

CNN : The input image is fed into the CNN layers.
These layers are trained to extract relevant features from the
image. Each layer consists of three operations. First, the
convolution operation, which applies a filter kernel of size
5x5 in the first two layers and 3x3 in the last three layers to
the input. Then, the non-linear RELU function is applied.
Finally, a pooling layer summarizes image regions and outputs
a downsized version of the input. While the image height
is downsized by 2 in each layer, feature maps (channels) are
added, so that the output feature map (or sequence) has a size
of 32x256.

RNN : The feature sequence contains 256 features per
time-step, the RNN propagates relevant information through
this sequence. The LSTM implementation of RNNs is used,
as it is able to propagate information through longer distances
and provides more robust training-characteristics than normal
RNN. The RNN output sequence is mapped to a matrix of size
32x80. The IAM dataset consists of 79 different characters,
further one additional character is needed for the CTC operation
(CTC blank label), therefore there are 80 entries for each of the
32 time-steps.

CTC:While training the NN, the CTC is given the LSTM-RNN

1

output matrix and the ground truth text and it computes the
loss value. While inferring, the CTC is only given the matrix
and it decodes it into the final text.

The NN outputs a character-probability matrix. This
matrix is either used for CTC loss calculation or for CTC
decoding. Ultimately, after performing this second step of the
algorithm, we will obtain the machine-printed words out of the
images provided as input.

Figure 2: Convolutional-Recurrent Neural Network (CRNN)
Architecture and Design

Improving Accuracy of Recognized Sentence
This section deals with improving the accuracy of the output
procured from neural network using techniques such as LM
and MLE. To build a LM, we collect the text from “All News”
dataset, clean it of other symbols except characters and spaces,
and tokenize it. From the resulting data, we create a set, each
for unigrams and bigrams. We will denote a “word” as “w”
from here. We calculate probabilities (P(w)) of unigrams,
and construct a conditional probability table (CPT) from the
bigrams. Next, a tree is generated for implementation of tree
search algorithms, where each node at any level represents a
word from the set of words, and the number of nodes in each
level equals the cardinality of this set. The root node represents
the empty word. A node at a given level is connected to each
node of the next level. An edge connecting an ith level node
(wi) to an (i+1)th level node (wi+1) has a weight given by:-

Levenshtein_Distance(word appearing in (i+1)th level,
(i+1)th word in current sentence) * (1 - P(wi+1|wi))

where P(wi+1|wi) is computed from the CPT. A path
from the root node to any leaf node describes a sentence, and
the length of the path reveals how likely it is that the sentence
made by nodes occurring in the path is actually the one given
to us as input. Uniform cost search is applied to the this tree
and the shortest path gives the correctly determined sentence.

3 Experimental Analysis

Datasets
The IAM Handwriting Database contains many forms of hand-
written English text like words and sentences with labels. We

have used this dataset for training and testing the word recog-
nition part of our model. We also used this to test our sentence
segmentation method.
We also used "All the news" dataset from kaggle to train our
sentence correction part of our model. This dataset contains the
publications of the New York Times, Breitbart, CNN, Business
Insider, the Atlantic, Fox News, Talking Points Memo, Buz-
zfeed News, National Review, New York Post, the Guardian,
NPR, Reuters, Vox, and the Washington Post between 2015 to
2017.

Results
The method by which we had split sentences into words has an
accuracy ofmore than 85 percent. We calculated error by count-
ing the number of inter-word spaces recognized wrongly. And
we build our accuracy matrix as sum of error in all sentences
divided by total number of words in those sentences.

Accuracy of the NN model of recognizing the word is 66%.
This is calculated as number of correctly recognized words
divided by the total number of words.
Currently there does not exist any standard performance metric
for LM.

4 Discussion and Future Directions
For splitting the sentence’s image into words’ images, we
assumed that gaps between the words are larger than the
gaps between characters. We also assumed that in between
words, there will be a horizontal space. However, in slant
hand-writing, finding the horizontal space will not give us
desired result. In that case, we can take projection of sentence
on a new axis created by tilting our horizontal axis a bit.
Tilting the axis by right amount, spaces would be clearly
visible on projection of sentence on the new axis. If we create
groups based on these spaces, the intra-group variance can
be minimized. It may also be possible that inter-character
spaces are almost equal to inter-word spaces; in such situations,
problem would be much difficult to solve and we will need to
incorporate the information of characters to find inter-word
spaces.

To improve the recognition accuracy we can do several things
such as data augmentation, which involves increasing the dataset
size by applying further (random) transformations to the input
images. We can remove cursive writing style in the input im-
ages, i.e. deslanting. More CNN layers could be added. LSTM
can be replaced by 2D-LSTM. Word beam search decoding
(CTC word beam search) can be incorporated to constrain the
output to dictionary words. We could also use a better dataset
for constructing LM. Using trigrams and ngrams while creating
LM would also help in improving the results.

References
[1] ["All the news" dataset at kaggle]

https://www.kaggle.com/snapcrack/all-the-news

[2] ["IAM Handwriting Database"]
https://www.kaggle.com/snapcrack/all-the-news

2

